A parallel multi-objective optimization algorithm for the calibration of mathematical models

نویسندگان

  • Daniele Muraro
  • Rui Dilão
چکیده

Based on evolutionary computation techniques, we present a parallel, globally convergent, multiobjective optimization algorithm which extends the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES). This approach enables identifying multiple global optima and multiple discontinuous Pareto set solutions of the optimization problem in a compact search space. After evaluating the algorithm with test functions, we apply our method to the identification of the parameters of a reaction–diffusion model of a genetic regulatory mechanism during Drosophila early development, our simulations being in agreement with the experimental data. Comparisons with a multi-objective version of the CMA-ES (MO-CMA-ES) on this dataset show that our algorithm outperforms largely the speed of convergence of MO-CMA-ES. We have identified an infinite number of accurate solutions of the model equations, associated with the Pareto set of the optimization problem. This non-unicity property of a biological developmental process explains phenotypic plasticity and resilience in biological systems. & 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm

Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...

متن کامل

Automatic Calibration of HEC-HMS Model Using Multi-Objective Fuzzy Optimal Models

Estimation of parameters of a hydrologic model is undertaken using a procedure called “calibration” in order to obtain predictions as close as possible to observed values. This study aimed to use the particle swarm optimization (PSO) algorithm for automatic calibration of the HEC-HMS hydrologic model, which includes a library of different event-based models for simulating the rainfall-runoff pr...

متن کامل

A Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network

Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flowtime through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters with it, this is why in recent decades extensive researches have been done on scheduling issues. A type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical ...

متن کامل

Optimization of the Kinematic Sensitivity and the Greatest Continuous Circle in the Constant-orientation Workspace of Planar Parallel Mechanisms

This paper presents the results of a comprehensive study on the efficiency of planar parallel mechanisms, considering their kinetostatic performance and also, their workspace. This aim is approached upon proceeding single- and multi-objective optimization procedures. Kinetostatic performances of ten different planar parallel mechanisms are analyzed by resorting to a recent index, kinematic sens...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Swarm and Evolutionary Computation

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013